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Abstract: 

Agility running activities are commonly used in the latter stages of rehabilitation for anterior 

cruciate ligament (ACL) reconstruction. However, the effects of agility running on anterior knee 

laxity in these patients have not been examined. The purpose of this study was to examine 

changes in anterior knee laxity before and after 30 minutes of agility running exercise. Subjects 

(N = 9) were female athletes ( X age = 20.1 ± 1.5 years; height = 171.7 ± 10.4 cm; weight = 65.7 

± 8.6 kg) with unilateral ACL reconstruction (central1/3) patella tendon graft, postoperation 

range = 9-52 months, X = 24.2 months). Measurements were made at 20° and 90° of knee 

flexion bilaterally with KT-1000 arthrometry IMEDmetric, San Diego, CA) and recorded in 

millimeters of displacement. Data were analyzed with an analysis of variance (ANOVA) with 

repeated measures (p < 0.05). Results showed no statistical differences between the ACL-

reconstructed knee and the normal knee at 20° and 90° knee flexion. The authors conclude that 

the central 1/3 patella tendon graft performs comparable to the normal knee when stressed with 

agility running exercise; therefore, agility exercise is an appropriate, safe, short-term activity. 

 

Article: 

After anterior cruciate ligament (ACL) reconstruction with the central 1/3 patella tendon graft, 

the goal of rehabilitation is to restore the patient to the highest possible functional level. Current 

surgical and rehabilitation concepts are designed to allow a more rapid return to functional activ-

ities with an acceptable level of stability and minimal alteration of joint mechanics 

(1,3,8,10,24,25). An activity commonly performed in the latter stages of rehabilitation for the 

ACL reconstructed patient is agility running which places a cyclic loading and unloading upon 

the knee joint (24,25). 
 
The function of all ligaments, including the ACL, is to stabilize, guide, and prevent excess joint 

motion (3). Load-deformation curves show that when the ACL is stressed below or to its yield 

point, it elastically returns to normal, and joint stability is maintained (3). However, cyclic 
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loading lowers the yield point of the ACL by increasing its compliance and, if the yield point is 

exceeded, collagen cross-links are broken and normal joint stability is compromised (3). 

 

Researchers have examined many aspects of knee stability in normal, ACL-deficient and ACL-

reconstructed knees. The effects of open- vs. closed- chain activities in rehabilitation pro- grams 

and in daily activities (17,22, 31) and the effects of cyclical loading and creep phase on the 

normal ligament and the ACL-deficient knee have been discussed (3,13,17,26,27,29). Previous 

research has examined the effects muscular coactivation of the hamstrings and quadriceps might 

play in maintaining knee stability (2, 6,11,23,27). In addition, the effects of various exercise 

activities on normal knees (26,29,30) and ACL-deficient knees (12,28) have also been evaluated. 

However, the effects of cyclic loading exercise, especially acceleration/deceleration running and 

cutting, on anterior knee joint stability after ACL reconstruction have not been documented in 

the literature. 

 

Researchers have reported increased knee joint laxity in non- pathological knees after exercise 

activities of distance running (30), running to fatigue (26), basketball, and power squatting (29). 

Researchers have also measured ACL-deficient knees both at rest and after exercise (4,5,12,14). 

Most notably, Grana and Muse (12) compared 26 ACL-deficient knees with 40 normal knees 

before and after 20 minutes of cycling and measured a 12% increase in anterior knee laxity in the 

ACL-deficient knees postexercise. Researchers have measured laxity in ACL-reconstructed 

knees at rest (9, 16,19,20) with most finding decreased anterior knee laxity in the ACL-

reconstructed knees immediately after reconstruction when compared with preoperative values 

(9,19) and increased laxity in the ACL-reconstructed knees after a period of 2 to 8 years when 

compared with the normal, contralateral limb (16). However, after a careful review of the lit-

erature, it appears that no investigators have measured the ACL- reconstructed knee immediately 

postexercise for laxity changes. A short term increase in laxity would seemingly have the 

potential to predispose an athlete to injury. As such, the effect of agility running exercise on 

anterior knee laxity in ACL-reconstructed knees deserves further study. 

 

From previous work, it can be concluded that repetitive, cyclic exercise activities increase 

anterior knee joint laxity in both normal and ACL-deficient knees. However, the effects of 

repetitive exercise on laxity in the ACL-reconstructed knee have not been fully validated. The 

authors believe that the knowledge base regarding the effects of repetitive agility exercise on 

anterior knee laxity in the ACL-reconstructed patient has, to this point, been based upon anec 

dotal evidence and results of studies on normal knees and ACL-deficient knees, not scientific 

inquiry of reconstructed knees. Knowledge of the effects of agility running exercise on anterior 

knee laxity in the ACL-reconstructed patient would benefit the clinician in three areas. First, 

such knowledge helps to determine if current surgical techniques are meeting the patients' needs 

for functional anterior knee joint stability with agility running and sports-related exercise. 

Second, this study yields information regarding potential short-term risk of reinjury to the patient 

due to increased anterior knee laxity caused by cyclical loading during agility exercise. Finally, if 

there is no difference between the ACL-reconstructed knee and the normal knee, this may serve 

to provide psychological benefit to the patient during rehabilitation since it will have been 

established scientifically that the surgically reconstructed knee can perform similarly to the 

normal knee with intense athletic exercise activities. Therefore, the purpose of this study was to 

compare anterior knee joint laxity before and after 30 minutes of agility running exercise in the 



ACL-reconstiucted patient and to compare this with the laxity changes in the opposite, unin-

volved limb. To perform this, KT- 1000 arthrometry assessment was made at knee joint angles of 

20° and 90° of knee flexion. It was hypothesized that the ACL-reconstructed knee would 

undergo significant increases in laxity compared with the normal knee when stressed with agility 

running exercise, and laxity in both knees would increase postexercise. 

 

METHODOLOGY  

Subjects 

Subjects were collegiate-level female athletes (N = 9; soccer = 3, lacrosse = 3, field hockey = 1, 

volleyball = 1, basketball = 1) between the ages of 18 and 22 years (age = 20.1 ± 1.5 years; 

height = 171.7 cm ± 10.37 cm; weight = 65.7 kg ± 8.58 kg) at the time of testing with a history 

of ACL-reconstruction using the central 1/3 patella tendon graft (range = 9-52 months 

postoperatively; X = 24.2 ± 13.0 months). The subjects' ACL-reconstructed limb comprised the 

test group (N = 9), and the normal contralateral limb comprised the control group (N = 9). 

Reconstructive procedures were performed by multiple surgeons, and all subjects had an intact 

PCL as determined arthroscopically and with stress testing prior to data collection. All subjects 

read and signed a consent form prior to participating in this study. 

 

Instrumentation 

All measurements were taken with a KT-1000 (MEDmetric, San Diego, CA) knee arthrometer 

modified with a model LCCB-50 strain gauge on line with a DP41-V processor (Omega 

Technologies, Inc., Stamford, CT) that gives a continual readout of lbs-force applied from a 

light- emitting digital diode (Figure 1). A bubble level was also attached for horizontal 

placement of the arthrometer on the extremity. 

 

Use of the KT-1000 is well-documented in the literature (5,7,15,16, 18,20,21,25,26,28,32). 

Studies have used test-retest procedures to determine the reliability of the instrument (20,21,32) 

and have found reliability coefficients ranging from .84 to .92 (21). Reliability of our modified 

KT- 1000 has been established in our laboratory using a test-retest procedure with nine subjects. 

The ICC was r = .84, and the associated standard error of measurement was 0.5 mm (15). 

 

Data Collection 

On the day of data collection, subjects were asked to refrain from any form of exercise prior to 

testing. Subjects were then instructed in the test protocol.  



 
FIGURE 1. KT-1000 with light-emitting diode gauge. 

 

Preexercise measurements were taken on a single trial with the subject supine. Measurements at 

20° were made using the popliteal pad provided with the KT-1000, and measurements at 90° 

were made using a tibial stabilizing apparatus (patent pending) resembling a continuous passive 

motion device which also stabilized the foot in a neutral position (Figure 2). Measurements were 

taken on each leg at both test positions. The order of measurements was counterbalanced for 

sequence of extremity measured first (involved/uninvolved) so that if subject A was measured on 

the involved extremity first, subject B was then measured on the uninvolved extremity first. The 

order of knee joint angle measurements was also counterbalanced so that, for example, if subject 

A was measured first at 20° on the involved extremity, then subject B would be measured first at 

90° on the uninvolved extremity, subject C would be measured first at 90° on the involved 

extremity, and subject D measured first at 20° on the uninvolved extremity. 

 

For each measurement, subjects were verbally encouraged to relax, and a posterior force of 67N 

(15 lbs) was applied temporarily and removed to "set" the knee joint at a neutral position and 

zero the testing device. An anterior force was then applied to a maximum of 133N (30 lbs). 

Force readings were made at each millimeter of laxity for each test position. Data were recorded 

as mm of displacement per lbs of force in a range of 0-133N (0-30 lbs). Only the displacement 

value at 133N (30 lbs) was used for data analysis. A single examiner took all measurements and 

was blinded from the force gauge which was read and recorded by an assistant.  

 

Each subject then rode an exercise bike for 5 minutes with no resistance as a "warm-up" exercise 

followed by three repetitions of 30 seconds duration each of stretching of the quadriceps, 

hamstrings, hip abductors, and hip adductor muscles bilaterally. The subjects then performed 30 

minutes of exercise on the agility running course designed by the author (Figure 3). Subjects 

began at the rest area where their resting heart rate was determined by palpating the radial pulse 

for 10 seconds and multiplying by six for beats per minute (BPM). Subjects began exercising by 

walking 9.1 m (10 yards), accelerating to jogging for 27.4 m (30 yards), accelerating to sprinting 



for 27.4 m (30 yards), decelerating to jogging for 13.7 m (15 yards), then performing zig-zag 

cutting around cones for 13.7 m (15 yards). Subjects immediately reversed direction and 

performed the cutting as described above, followed by jogging for 13.7 m (15 yards), sprinting 

for 27.4 m (30 yards), etc. Field markers were in place to instruct the subjects when to change 

from walking to jogging, jogging to running, etc. 

 

 

FIGURE 2. Tibial stabilizer for assessment of joint laxity at 90° of knee flexion. 
 

 



 

Subjects were encouraged to perform at 70%-85% of their estimated maximum heart rate (220 - 

age). Upon completion of each agility course lap, subjects were given 15 seconds of rest, during 

which time the author again measured heart rate as described above to determine BPM. Subjects 

were verbally instructed to increase or decrease their pace based upon their heart rate. Upon 

completion of the 30-minute exercise course, subjects were immediately reevaluated with the 

KT-1000 as before, with measurements performed in the same order as during the preexercise 

evaluation. 

 

Data Analysis 

The pre- and post-test measurements in mm of displacement per lbs of force of the ACL-

reconstructed limb were compared with the normal limb. A 2 X 2 X 2 factorial analysis of 

variance (ANOVA) with repeated measures on all factors was performed to determine statistical 

difference between independent variables of pre- and post-exercise laxity, pathological vs. 

nonpathological knee, and measurements at 200 and 90°. Statistical significance was set at the 

0.05 level. 

 

RESULTS 

The results were recorded as the amount of anterior tibial displacement (in mm) at 20° and 90° of 

knee flexion with a force of 133N (30 Ibs) applied to the ACL-reconstructed limb and the normal 

contralateral limb. Subject performance was measured as the heart rate in BPM (X = 167.8 BPM; 

range = 158.8-177.0) and total laps completed (X = 20.1; range = 18-22) for the 30-minute 

exercise bout. 

 

The ACL-reconstructed and normal group means and standard deviations are presented in Tables 

1 and 2, respectively. Slight increases occurred for all postexercise measurements at 20° and 90° 

of knee flexion (Figures 4 and 5, respectively). However, the 2 X 2 X 2 ANOVA yielded no 

significant differences or interactions between pre- and post-test measures, ACL-reconstructed 

and normal groups, and 20° and 90° measurements (p > 0.05) (Table 3). 

 
 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 

The laxity differences between the normal, uninvolved knee and the reconstructed knee were not 

significant with 133N (30 Ibs) of force applied. Preexercise values at 20° of 5.7 mm for the 

ACL-reconstructed group and 4.4 mm for the normal group are very comparable with the "nor-

mal" figures given by Daniel et al (4) of 5.8 ± 1.9 mm as measured in 338 subjects with the KT-

2000. The preexercise measurements at 90° of 4.2 mm for the ACL-reconstructed group and 3.7 

mm for the normal group are comparable with McLaughlin and Perrin's (21) measurements of 

3.1 ± 1.0 mm. 
 

The primary finding of this study was that there were no significant differences between the 

ACL-reconstructed knee and the normal knee when stressed with agility-type running exercise. It 

was hypothesized that the ACL-reconstructed group would have significantly increased laxity 

when compared with the normal knee. This hypothesis was based upon the work by Harter et al 

(16) which showed significantly greater laxity occurring over time. The fact that there were no 

significant differences between pre- and post-exercise measures may be attributed to the ACL 

graft possibly having viscoelastic properties similar to the normal ACL (16), which would allow 

the graft to respond to exercise in a fashion similar to the normal ACL. 



 

In a study that examined the effects of a known exercise load upon the knee joint, Grana and 

Muse (12) compared 26 ACL-deficient knees with 40 normal knees with a Stryker arthrometer 

(Stryker, Kalamazoo, MI) after 20 minutes of exercise on a bicycle ergometer. The authors noted 

a 21% increase in laxity in the control knees and a 12% increase in laxity in the ACL-deficient 

knees. When comparing our pre- and post-exercise values in a percentage basis with those of 

Grana and Muse, we see that we also had trends toward greater increases (although not 

significant) after exercise in the normal knees as compared with the ACL-reconstructed knees at 

both 20° (normal group = 29% increase in laxity; ACLreconstructed group = 14%) and at 90° 

(normal group = 32%; ACL-reconstructed group = 19%). We attribute our findings of trends 

toward greater postexercise laxity increases in the normal knee to the fact that the ACL-

reconstructed knee was slightly more lax in the preexercise measurement when compared with 

the normal knee (Tables 1 and 2), just as Grana and Muse observed greater preexercise laxity in 

the ACLdeficient knees (12). When directly compared with the normal group studied by Grana 

and Muse (12), we also noted greater postexercise laxity measurements (in mm) in both our 

normal and ACL-reconstructed groups after running as compared with their cycling group. The 

increased laxity observed in the present study can be accounted for by examining the findings of 

Henning et al (17). Henning et al (17), using an in vivo strain gauge on a single subject, recorded 

that stationary cycling produced only 7 units of stress (100 units = 80 lbs) on the ACL as com-

pared with 89 units of stress with jogging on the floor. Therefore, jogging would be expected to 



stress the graft closer to its failing point. For this reason, it would be expected that agility 

running would stress the graft in a way that cycling could not. In addition, the duration of 

exercise in the present study was 50% longer than the cycling activity performed in the study by 

Grana and Muse (12). Each of the above factors could cause increased joint laxity, leading to the 

laxity differences between the study by Grana and Muse (12) and this present study. 

 

 



 

 

 

The level of subject relaxation is considered critical to obtaining accurate measures in laxity 

testing (4,5,9, 21,29,32). Verbal encouragement is often used to obtain relaxation of the 

quadriceps and hamstrings. This procedure was followed, and it was believed that adequate 

relaxation was achieved by our subjects. Postexercise measurements were taken immediately 

upon completion of the exercise protocol. However, Stoller et al (30) found a gradual increase in 

laxity after exercise which reached a peak and then began a recovery phase with an ultimate 

return to normal. In light of this fact, we do not discount the possibility of increased postexercise 

muscle tone in our subjects, which may have reduced any potential increase in laxity measure-

ments. However, we believe that an immediate postexercise measure is a more accurate predictor 

of exercise- induced laxity as a potential cause of injury from rehabilitation activities or athletics 

than a measurement taken 30 minutes or an hour after completion of the exercise. 

 

External constraint to anterior tibial translation has been identified as a factor in laxity 

measurements (4,9). For the measurements at 20°, there were no external constraints applied to 

the limb with the exception of the measuring device, the KT- 1000. For the measures at 90°, a 



prototype model of a tibial stabilizer was used to position the knee joint and fix the leg and foot 

in neutral rotation. Stability was maintained through Velcro® straps around the mid-thigh and 

foot. It is our impression that based upon the sites of force application with the KT-1000 and 

stabilization of the limb, the tibial stabilizer would have a minimal effect, if any, on laxity 

measurements. In addition, since bilateral comparisons were made, any effect would be shared 

between groups. 

 

Counterbalancing of extremity measurement and knee flexion angle measurement sequence was 

performed. This was an attempt to eliminate a false statistical increase in anterior knee laxity for 

any one position due to repeated measures with 133N of force. It was believed that the 

counterbalancing method utilized eliminated any one position or extremity from being compro-

mised due to measurement sequence. 

 

An effort was made to develop an exercise program that closely simulated rehabilitation agility 

activities and sport activities. Acceleration, deceleration, and cutting phases were included. 

Performance measures revealed that as a group, subjects' level of effort was 83% of maximum 

heart rate, which suggests exertion at an intense sports participation level, which should have 

provided an accurate picture of sports-induced laxity. 

 

Limitations 

Three readily identifiable limitations exist in this study. The first was the delimitation of the 

population studied, ie., college female athletes with unilateral ACL. reconstruction. This resulted 

in a relatively small number of subjects (N = 9) which diminished the power of statistical 

calculations and determination of significance. However, the number of subjects in this study 

was similar to the number of subjects involved in other studies that examined exercise and knee 

joint laxity (12,26,29,30). 

 

The second potential problem was the time postsurgically that the subjects were tested. All 

subjects had returned to activity so the acute effects of agility running after reconstruction could 

not fully be determined. 

 

The third potential problem was related to the fact that the subjects were highly competitive 

athletes and were in excellent physical condition. It was possible that 30 minutes of exercise was 

not sufficient to cause the desired level of muscle fatigue in these subjects. However, the purpose 

of the study was not to determine the level of exercise necessary to cause laxity differences 

between the normal knee and the ACL-reconstructed knee (although this may be important), but 

to determine if there were differences between the two groups at a given level of exercise. 

 

CONCLUSION 

This study evaluated the effects of agility exercise on anterior knee joint laxity in ACL-

reconstructed patients. Anecdotal evidence from clinical observation has suggested that the 

ACL-reconstructed knee performs similarly to the normal knee when stressed with agility 

activities. Based upon the results of this study using a collegiate population, no significant 

differences in exercise-induced laxity existed between the normal knee and the contralateral 

ACL-reconstructed knee with the central 1/4 patella tendon graft at 20° and 90° of knee flexion. 



Further study is warranted using a similar protocol on subjects 6 to 9 months postoperatively for 

the acute effects of agility running on the ACL graft. Further study is also warranted on the 

effects of time and exercise on graft laxity (serial measurements during the rehabilitation 

program up to 10+ years postoperatively). In addition, higher intensity/longer duration protocols 

should also be used to assess the effects of more intense exercise on knee laxity.  
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